

Using Higher Moments of Fluctuations and their Ratios in the Search for the QCD Critical Point

Christiana Athanasiou, MIT

work with: Krishna Rajagopal (MIT) Misha Stephanov (University of Illinois)

Outline

- Introduction
- Critical Contribution to Particle Multiplicity Fluctuations
- Ratios of Fluctuation Observables
- Summary

Outline

- Introduction
- Critical Contribution to Particle Multiplicity Fluctuations
- Ratios of Fluctuation Observables
- Summary

- Locating the critical point from first-principles hard
 - → Heavy-Ion Collision Experiments

- Locating the critical point from first-principles hard
 Heavy-Ion Collision Experiments
- RHIC: Au-Au collisions at $\sqrt{s_{\text{max}}} = 200 \text{ GeV}$

- Locating the critical point from first-principles hard
 Heavy-Ion Collision Experiments
- RHIC: Au-Au collisions at $\sqrt{s_{\text{max}}} = 200 \text{ GeV}$

→ strongly-coupled QGP

Heavy-Ion Collision Experiments - continued

• As QGP expands and cools, it follows trajectories with approx. $n_B/s = \text{const.}$

- As QGP expands and cools, it follows trajectories with approx. $n_B/s = \text{const.}$
- Chemical freeze-out: system dilute enough that particle numbers freeze

- As QGP expands and cools, it follows trajectories with approx. $n_B/s = \text{const.}$
- Chemical freeze-out: system dilute enough that particle numbers freeze
- Detector "sees" particle multiplicities from freeze-out conditions

- As QGP expands and cools, it follows trajectories with approx. $n_B/s = \text{const.}$
- Chemical freeze-out: system dilute enough that particle numbers freeze
- Detector "sees" particle multiplicities from freeze-out conditions
- To maximize critical point (CP) effects vary $\sqrt{s}\,$ to get freeze-out point near CP

- As QGP expands and cools, it follows trajectories with approx. $n_B/s = \text{const.}$
- Chemical freeze-out: system dilute enough that particle numbers freeze
- Detector "sees" particle multiplicities from freeze-out conditions
- To maximize critical point (CP) effects vary $\sqrt{s}\,$ to get freeze-out point near CP
- Find observables that are sensitive to proximity to the CP

- As QGP expands and cools, it follows trajectories with approx. $n_B/s = \text{const.}$
- Chemical freeze-out: system dilute enough that particle numbers freeze
- Detector "sees" particle multiplicities from freeze-out conditions
- To maximize critical point (CP) effects vary $\sqrt{s}\,$ to get freeze-out point near CP
- Find observables that are sensitive to proximity to the CP

Event-by-Event fluctuations

Outline

- Introduction
- Critical Contribution to Particle Multiplicity Fluctuations
- Ratios of Fluctuation Observables
- Summary

- Critical mode - $\boldsymbol{\sigma}$: order parameter of the chiral phase transition

- Critical mode σ : order parameter of the chiral phase transition
- Develops long wavelength correlations at the CP

- Critical mode σ : order parameter of the chiral phase transition
- Develops long wavelength correlations at the CP
- Effective action

$$\Omega(\sigma) = \int d^3x \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right].$$

- Critical mode σ : order parameter of the chiral phase transition
- Develops long wavelength correlations at the CP
- Effective action

$$\Omega(\sigma) = \int d^3x \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right].$$

- Correlation length $\xi = m_{\sigma}^{-1}$ diverges at the CP
- Near the CP: $\lambda_3 = \tilde{\lambda}_3 T (T \xi)^{-3/2}$, $\lambda_4 = \tilde{\lambda}_4 (T \xi)^{-1}$ with $0 \lesssim \tilde{\lambda}_3 \lesssim 8$, $4 \lesssim \tilde{\lambda}_4 \lesssim 20$ dimensionless and known in the Ising universality class

Massachusetts Institute of Technology

• $\xi \to \infty$ at CP in the thermodynamic limit $(t, V \to \infty)$

- $\xi \to \infty$ at CP in the thermodynamic limit $(t, V \to \infty)$
- Finite system lifetime $\implies \xi_{max} \sim 2 \text{ fm}$ compared to $\sim 0.5 \text{ fm}$ away from the CP (Berdnikov, Rajagopal 00)

- $\xi \to \infty$ at CP in the thermodynamic limit $(t, V \to \infty)$
- Finite system lifetime $\implies \xi_{max} \sim 2 \text{ fm}$ compared to $\sim 0.5 \text{ fm}$ away from the CP (Berdnikov, Rajagopal 00)
- σ couples to pions and protons:

$$\mathcal{L}_{\sigma\pi\pi,\sigma pp} = 2 G \sigma \pi^+ \pi^- + g \sigma \bar{p} p$$

- $\xi \to \infty$ at CP in the thermodynamic limit $(t, V \to \infty)$
- Finite system lifetime $\implies \xi_{max} \sim 2 \text{ fm}$ compared to $\sim 0.5 \text{ fm}$ away from the CP (Berdnikov, Rajagopal 00)
- σ couples to pions and protons:

 $\mathcal{L}_{\sigma\pi\pi,\sigma pp} = 2 G \sigma \pi^+\pi^- + g \sigma \bar{p} p$

- Critical mode fluctuations affect
 - Particle multiplicity fluctuations
 - Momentum distributions
 - Ratios, etc...

of these particles.

- $\xi \to \infty$ at CP in the thermodynamic limit $(t, V \to \infty)$
- Finite system lifetime $\implies \xi_{max} \sim 2 \text{ fm}$ compared to $\sim 0.5 \text{ fm}$ away from the CP (Berdnikov, Rajagopal 00)
- σ couples to pions and protons:

 $\mathcal{L}_{\sigma\pi\pi,\sigma pp} = 2 G \sigma \pi^+ \pi^- + g \sigma \bar{p} p$

- Critical mode fluctuations affect
 - Particle multiplicity fluctuations
 - Momentum distributions
 - Ratios, etc...

of these particles.

Number of events

Number of protons

• Can repeat these calculations for pions, net protons, etc

- Can repeat these calculations for pions, net protons, etc
- Want to obtain the critical contribution to these quantities

- Can repeat these calculations for pions, net protons, etc
- Want to obtain the critical contribution to these quantities
- We will use cumulants, e.g.:

$$\kappa_2 = \langle N^2 \rangle, \quad \kappa_3 = \langle N^3 \rangle, \quad \kappa_4 \equiv \langle \langle N^4 \rangle \rangle = \langle N^4 \rangle - 3 \langle N^2 \rangle^2$$

$$\bigotimes \bigvee \bigotimes \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} = d^2 \frac{1}{m_{\sigma}^2 V} \frac{g^2}{T} \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}}$$

$$m_{\sigma} = \xi^{-1}, \ \gamma_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}/m, \ v_{\mathbf{k}}^2 = n_{\mathbf{k}}(1 \pm n_{\mathbf{k}}),$$
$$g_{\pi} = G/m_{\pi}, \ d = 2, \ \lambda_3 = \tilde{\lambda}_3 \ T \ (T \ \xi)^{-3/2}, \ \lambda_4 = \tilde{\lambda}_4 \ (T \ \xi)^{-1}$$

Massachusetts Institute of Technology

(Rajagopal, Shuryak, Stephanov 99, Stephanov 08)

$$\langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} = d^2 \frac{1}{m_{\sigma}^2 V} \frac{g^2}{T} \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}}$$
$$\langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \delta n_{\mathbf{k_3}} \rangle_{\sigma} = d^3 \frac{2\lambda_3}{V^2 T} \left(\frac{g}{m_{\sigma}^2}\right)^3 \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}} \frac{v_{\mathbf{k_3}}^2}{\gamma_{\mathbf{k_3}}}$$

$$m_{\sigma} = \xi^{-1}, \ \gamma_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}/m, \ v_{\mathbf{k}}^2 = n_{\mathbf{k}}(1 \pm n_{\mathbf{k}}),$$
$$g_{\pi} = G/m_{\pi}, \ d = 2, \ \lambda_3 = \tilde{\lambda}_3 \ T \ (T \ \xi)^{-3/2}, \ \lambda_4 = \tilde{\lambda}_4 \ (T \ \xi)^{-1}$$

(Rajagopal, Shuryak, Stephanov 99, Stephanov 08)

0

$$\langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} = d^2 \frac{1}{m_{\sigma}^2 V} \frac{g^2}{T} \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}}$$
$$\langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \delta n_{\mathbf{k_3}} \rangle_{\sigma} = d^3 \frac{2\lambda_3}{V^2 T} \left(\frac{g}{m_{\sigma}^2}\right)^3 \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}} \frac{v_{\mathbf{k_3}}^2}{\gamma_{\mathbf{k_3}}}$$

+ ...

$$\langle \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \delta n_{\mathbf{k_3}} \delta n_{\mathbf{k_4}} \rangle \rangle_{\sigma} = d^4 \frac{6}{V^3 T} \left(2 \left(\frac{\lambda_3}{m_{\sigma}} \right)^2 - \lambda_4 \right) \\ \times \left(\frac{g}{m_{\sigma}^2} \right)^4 \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}} \frac{v_{\mathbf{k_3}}^2}{\gamma_{\mathbf{k_3}}} \frac{v_{\mathbf{k_4}}^2}{\gamma_{\mathbf{k_4}}}$$

$$m_{\sigma} = \xi^{-1}, \ \gamma_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}/m, \ v_{\mathbf{k}}^2 = n_{\mathbf{k}}(1 \pm n_{\mathbf{k}}),$$
$$g_{\pi} = G/m_{\pi}, \ d = 2, \ \lambda_3 = \tilde{\lambda}_3 \ T \ (T \ \xi)^{-3/2}, \ \lambda_4 = \tilde{\lambda}_4 \ (T \ \xi)^{-1}$$

Massachusetts Institute of **Technology**

(Rajagopal, Shuryak, Stephanov 99, Stephanov 08)

0

0

$$\langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} = d^2 \frac{1}{m_{\sigma}^2 V} \frac{g^2}{T} \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}} \quad \boldsymbol{\propto \xi^2}$$
$$\langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \delta n_{\mathbf{k_3}} \rangle_{\sigma} = d^3 \frac{2\lambda_3}{V^2 T} \left(\frac{g}{m_{\sigma}^2}\right)^3 \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}} \frac{v_{\mathbf{k_3}}^2}{\gamma_{\mathbf{k_3}}} \quad \boldsymbol{\propto \xi^{9/2}}$$

+ ...

$$\begin{split} \langle \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \delta n_{\mathbf{k_3}} \delta n_{\mathbf{k_4}} \rangle \rangle_{\sigma} &= d^4 \frac{6}{V^3 T} \left(2 \left(\frac{\lambda_3}{m_{\sigma}} \right)^2 - \lambda_4 \right) \\ & \times \left(\frac{g}{m_{\sigma}^2} \right)^4 \frac{v_{\mathbf{k_1}}^2}{\gamma_{\mathbf{k_1}}} \frac{v_{\mathbf{k_2}}^2}{\gamma_{\mathbf{k_2}}} \frac{v_{\mathbf{k_3}}^2}{\gamma_{\mathbf{k_3}}} \frac{v_{\mathbf{k_4}}^2}{\gamma_{\mathbf{k_4}}} \quad \mathbf{\propto \xi^7} \end{split}$$

$$m_{\sigma} = \xi^{-1}, \ \gamma_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}/m, \ v_{\mathbf{k}}^2 = n_{\mathbf{k}}(1 \pm n_{\mathbf{k}}),$$
$$g_{\pi} = G/m_{\pi}, \ d = 2, \ \lambda_3 = \tilde{\lambda}_3 \ T \ (T \ \xi)^{-3/2}, \ \lambda_4 = \tilde{\lambda}_4 \ (T \ \xi)^{-1}$$

Massachusetts Institute of Technology

(Rajagopal, Shuryak, Stephanov 99, Stephanov 08)

Net protons and mixed correlators

• Net protons: $N_p - N_{\overline{p}}$

Adapt previous expressions by replacing:

$$v_{\mathbf{k}}^{p\ 2} \to v_{\mathbf{k}}^{p\ 2} - v_{\mathbf{k}}^{\overline{p}\ 2}$$

Net protons and mixed correlators

• Net protons: $N_p - N_{\overline{p}}$

Adapt previous expressions by replacing:

$$v_{\mathbf{k}}^{p\,2} \to v_{\mathbf{k}}^{p\,2} - v_{\mathbf{k}}^{\overline{p}\,2}$$

Can also calculate mixed correlators, e.g. 2 pion – 2 proton:

$$\langle\langle\delta n_{\mathbf{p_1}}^{\pi}\delta n_{\mathbf{p_2}}^{\pi}\delta n_{\mathbf{p_3}}^{p}\delta n_{\mathbf{p_4}}^{p}\rangle\rangle_{\sigma} = d_{p}^{2}d_{\pi}^{2}\frac{6}{V^{3}T}\left(2\left(\frac{\lambda_{3}}{m_{\sigma}}\right)^{2} - \lambda_{4}\right)\left(\frac{g_{p}\,g_{\pi}}{m_{\sigma}^{4}}\right)^{2}\frac{v_{\mathbf{p_1}}^{\pi\,2}}{\gamma_{\mathbf{p_1}}^{\pi}}\frac{v_{\mathbf{p_2}}^{\pi\,2}}{\gamma_{\mathbf{p_2}}^{\pi}}\frac{v_{\mathbf{p_3}}^{p\,2}}{\gamma_{\mathbf{p_3}}^{p}}\frac{v_{\mathbf{p_4}}^{p\,2}}{\gamma_{\mathbf{p_4}}^{p}}$$

Net protons and mixed correlators

• Net protons: $N_p - N_{\overline{p}}$

Adapt previous expressions by replacing:

$$v_{\mathbf{k}}^{p\ 2} \to v_{\mathbf{k}}^{p\ 2} - v_{\mathbf{k}}^{\overline{p}\ 2}$$

Can also calculate mixed correlators, e.g. 2 pion – 2 proton:

$$\langle\langle\delta n_{\mathbf{p_1}}^{\pi}\delta n_{\mathbf{p_2}}^{\pi}\delta n_{\mathbf{p_3}}^{p}\delta n_{\mathbf{p_4}}^{p}\rangle\rangle_{\sigma} = d_{p}^{2}d_{\pi}^{2}\frac{6}{V^{3}T}\left(2\left(\frac{\lambda_{3}}{m_{\sigma}}\right)^{2} - \lambda_{4}\right)\left(\frac{g_{p}\,g_{\pi}}{m_{\sigma}^{4}}\right)^{2}\frac{v_{\mathbf{p_1}}^{\pi\,2}}{\gamma_{\mathbf{p_1}}^{\pi}}\frac{v_{\mathbf{p_2}}^{\pi\,2}}{\gamma_{\mathbf{p_3}}^{\pi}}\frac{v_{\mathbf{p_3}}^{p\,2}}{\gamma_{\mathbf{p_4}}^{p}}\frac{v_{\mathbf{p_4}}^{p\,2}}{\gamma_{\mathbf{p_4}}^{p}}$$

• Note: correlators depend on 5 parameters:

 $G, g, \xi, \tilde{\lambda}_3, \tilde{\lambda}_4$

which have large uncertainties

• Second cumulant – variance:

$$\kappa_{2p,\sigma} = \langle (\delta N_p)^2 \rangle_{\sigma} = \int_{\mathbf{k_1}} \int_{\mathbf{k_2}} \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} \propto V^1$$

• Second cumulant – variance:

$$\kappa_{2p,\sigma} = \langle (\delta N_p)^2 \rangle_{\sigma} = \int_{\mathbf{k_1}} \int_{\mathbf{k_2}} \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} \propto V^1$$

• Normalizing:
$$\omega_{2p,\sigma} = \frac{\kappa_{2p,\sigma}}{N_p} = d_p^2 \frac{g^2 \xi^2}{T} \left(\int_{\mathbf{k}} \frac{v_{\mathbf{k}}^2}{\gamma_{\mathbf{k}}} \right)^2 \left(\int_{\mathbf{k}} n_{\mathbf{k}} \right)^{-1}$$

• Second cumulant – variance:

$$\kappa_{2p,\sigma} = \langle (\delta N_p)^2 \rangle_{\sigma} = \int_{\mathbf{k_1}} \int_{\mathbf{k_2}} \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} \propto V^1$$

• Normalizing:
$$\omega_{2p,\sigma} = \frac{\kappa_{2p,\sigma}}{N_p} = d_p^2 \frac{g^2 \xi^2}{T} \left(\int_{\mathbf{k}} \frac{v_{\mathbf{k}}^2}{\gamma_{\mathbf{k}}} \right)^2 \left(\int_{\mathbf{k}} n_{\mathbf{k}} \right)^{-1}$$

• For mixed cumulants with *i* protons and *j* pions:

$$\omega_{ipj\pi} = \frac{\kappa_{ipj\pi}}{N_p^{\frac{i}{i+j}} N_\pi^{\frac{j}{i+j}}}$$

• Second cumulant – variance:

$$\kappa_{2p,\sigma} = \langle (\delta N_p)^2 \rangle_{\sigma} = \int_{\mathbf{k_1}} \int_{\mathbf{k_2}} \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} \propto V^1$$

• Normalizing:
$$\omega_{2p,\sigma} = \frac{\kappa_{2p,\sigma}}{N_p} = d_p^2 \frac{g^2 \xi^2}{T} \left(\int_{\mathbf{k}} \frac{v_{\mathbf{k}}^2}{\gamma_{\mathbf{k}}} \right)^2 \left(\int_{\mathbf{k}} n_{\mathbf{k}} \right)^{-1}$$

• For mixed cumulants with *i* protons and *j* pions:

$$\omega_{ipj\pi} = \frac{\kappa_{ipj\pi}}{N_p^{\frac{i}{i+j}} N_\pi^{\frac{j}{i+j}}}$$

• Non-critical contribution to $\omega_{ipj\pi} = \delta_{i,i+j} + \delta_{j,i+j} + (\text{few \%})$

• Second cumulant – variance:

•

$$\kappa_{2p,\sigma} = \langle (\delta N_p)^2 \rangle_{\sigma} = \int_{\mathbf{k_1}} \int_{\mathbf{k_2}} \langle \delta n_{\mathbf{k_1}} \delta n_{\mathbf{k_2}} \rangle_{\sigma} \propto V^1$$

• Normalizing:
$$\omega_{2p,\sigma} = \frac{\kappa_{2p,\sigma}}{N_p} = d_p^2 \frac{g^2 \xi^2}{T} \left(\int_{\mathbf{k}} \frac{v_{\mathbf{k}}^2}{\gamma_{\mathbf{k}}} \right)^2 \left(\int_{\mathbf{k}} n_{\mathbf{k}} \right)^{-1}$$

• For mixed cumulants with *i* protons and *j* pions:

 $\omega_4 \propto \xi^7$

• Higher cumulants depend stronger on ξ : $\omega_2 \propto \xi^2$, $\omega_3 \propto \xi^{9/2}$,

Massachusetts Institute of Technology

- Higher cumulants depend stronger on ξ : $\omega_2 \propto \xi^2$, $\omega_3 \propto \xi^{9/2}$, $\omega_4 \propto \xi^7$
- As we approach the CP ξ increases and then decreases as we move away from it

- Higher cumulants depend stronger on ξ : $\omega_2 \propto \xi^2$, $\omega_3 \propto \xi^{9/2}$, $\omega_4 \propto \xi^7$
- As we approach the CP ξ increases and then decreases as we move away from it
- CP signature: Non-monotonic behavior, as a function of collision energy, of multiplicity cumulants

• Higher cumulants depend stronger on ξ : $\omega_2 \propto \xi^2$,

 As we approach the CP ξ increases and then decreases as we move away from it

 $\omega_3 \propto \xi^{9/2},$

 $\omega_{4} \propto \xi^{7}$

• CP signature: Non-monotonic behavior, as a function of collision energy, of multiplicity cumulants

Multiplicity cumulants – example plots

Data on net proton cumulants

Massachusetts Institute of Technology

Critical contribution to proton ω_4

Massachusetts Institute of Technology

Multiplicity cumulants – movie

Changing the critical μ_B – the location of the CP:

Outline

- Introduction
- Critical Contribution to Particle Multiplicity Fluctuations
- Ratios of Fluctuation Observables
- Summary

Uncertainties of parameters

• Cumulants depend on 5 non-universal parameters:

 $\kappa_{2\pi} \sim V T^{-1} G^2 \xi^2 N_{\pi}^2,$ $\kappa_{3\pi} \sim V T^{-3/2} G^3 \tilde{\lambda}_3 \xi^{9/2} N_{\pi}^3,$ $\kappa_{4\pi} \sim V T^{-2} G^4 (2 \tilde{\lambda}_3^2 - \tilde{\lambda}_4) \xi^7 N_{\pi}^4$

Uncertainties of parameters

• Cumulants depend on 5 non-universal parameters: $\kappa_{2\pi} \sim VT^{-1}G^2\xi^2 N_{\pi}^2$,

 $\kappa_{3\pi} \sim V T^{-3/2} G^3 \tilde{\lambda}_3 \xi^{9/2} N_\pi^3,$ $\kappa_{4\pi} \sim V T^{-2} G^4 (2 \tilde{\lambda}_3^2 - \tilde{\lambda}_4) \xi^7 N_\pi^4$

• $G, g, \xi, \tilde{\lambda}_3, \tilde{\lambda}_4$ have large uncertainties

→ hard to predict the critical contribution to cumulants

Uncertainties of parameters

• Cumulants depend on 5 non-universal parameters:

 $\kappa_{2\pi} \sim V T^{-1} G^2 \xi^2 N_{\pi}^2,$ $\kappa_{3\pi} \sim V T^{-3/2} G^3 \tilde{\lambda}_3 \xi^{9/2} N_{\pi}^3,$ $\kappa_{4\pi} \sim V T^{-2} G^4 (2 \tilde{\lambda}_3^2 - \tilde{\lambda}_4) \xi^7 N_{\pi}^4$

- $G, g, \xi, \tilde{\lambda}_3, \tilde{\lambda}_4$ have large uncertainties
- → hard to predict the critical contribution to cumulants
- By taking ratios of cumulants can cancel some parameter dependence
- → minimize observable uncertainties

Ratios of multiplicity cumulants

ratio	V	$n_p(\mu_B)$	g	G	$\tilde{\lambda}_3$	$\tilde{\lambda}'_4$	ξ
N_{π}	1	-	-	-	-	-	-
N_p	1	1	-	-	-	-	-
$\kappa_{ipj\pi}$	1	i	i	j	$\delta_{r,3}$	$\delta_{r,4}$	$\frac{5}{2}r - 3$
$\omega_{ipj\pi}$	-	$i - \frac{i}{r}$	i	j	$\delta_{r,3}$	$\delta_{r,4}$	$\frac{5}{2}r - 3$
$\kappa_{ipj\pi} N_{\pi}^{i-1} / N_p^i$	-	-	i	j	$\delta_{r,3}$	$\delta_{r,4}$	$\frac{5}{2}r - 3$
$\kappa_{2p2\pi}N_{\pi}/\kappa_{4\pi}\kappa_{2p}$	-	-	-	-2	-	-	-2
$\kappa_{4p}N_{\pi}^2/\kappa_{4\pi}\kappa_{2p}^2$	-	-	-	-4	-	-	-4
$\kappa_{2p2\pi}N_p^2/\kappa_{4p}N_\pi^2$	-	-	-2	2	-	-	-
$\kappa_{3p1\pi}N_p/\kappa_{4p}N_\pi$	-	-	$^{-1}$	1	-	-	-
$\kappa_{3p}N_p^{3/2}/\kappa_{2p}^{9/4}N_\pi^{1/4}$	-	-	-3/2	-	1	-	-
$\kappa_{2p}\kappa_{4p}/\kappa_{3p}^2$	-	-	-	-	-2	1	-
$\frac{\kappa_{2p}\kappa_{4p}/\kappa_{3p}^2}{\kappa_{3p}\kappa_{2\pi}^{3/2}/\kappa_{3\pi}\kappa_{2p}^{3/2}}$	-	-	-	-	-2 -	1	-
$\frac{\kappa_{2p}\kappa_{4p}/\kappa_{3p}^2}{\kappa_{3p}\kappa_{2\pi}^{3/2}/\kappa_{3\pi}\kappa_{2p}^{3/2}} \frac{\kappa_{4p}\kappa_{2\pi}^{3/2}}{\kappa_{4p}\kappa_{2\pi}^2/\kappa_{4\pi}\kappa_{2p}^2}$	-	-	-		-2 - -	1 - -	-
$\frac{\kappa_{2p}\kappa_{4p}/\kappa_{3p}^2}{\kappa_{3p}\kappa_{2\pi}^{3/2}/\kappa_{3\pi}\kappa_{2p}^{3/2}} \\ \frac{\kappa_{4p}\kappa_{2\pi}^2/\kappa_{4\pi}\kappa_{2p}^2}{\kappa_{2p2\pi}^2/\kappa_{4\pi}\kappa_{4p}}$	- - -			- - -	-2 - -	1	

Ratios taken after subtracting Poisson and defined $\, {\tilde \lambda}_4' \equiv 2 { ilde \lambda}_3^2 - { ilde \lambda}_4 \,$

r = i + j

Ratios of multiplicity cumulants

	ratio	V	$n_p(\mu_B)$	g	G	$\tilde{\lambda}_3$	$\tilde{\lambda}'_4$	ξ
	N_{π}	1	-	-	-	-	-	-
	N_p	1	1	-	-	-	-	-
	$\kappa_{ipj\pi}$	1	i	i	j	$\delta_{r,3}$	$\delta_{r,4}$	$\frac{5}{2}r - 3$
	$\omega_{ipj\pi}$	-	$i - \frac{i}{r}$	i	j	$\delta_{r,3}$	$\delta_{r,4}$	$\frac{5}{2}r - 3$
	$\kappa_{ipj\pi} N_{\pi}^{i-1} / N_p^i$	-	-	i	j	$\delta_{r,3}$	$\delta_{r,4}$	$\frac{5}{2}r - 3$
	$\kappa_{2p2\pi}N_{\pi}/\kappa_{4\pi}\kappa_{2p}$	-	-	-	-2	-	-	-2
	$\kappa_{4p}N_{\pi}^2/\kappa_{4\pi}\kappa_{2p}^2$	-	-	-	-4	-	-	-4
	$\kappa_{2p2\pi}N_p^2/\kappa_{4p}N_\pi^2$	-	-	$^{-2}$	2	-	-	-
	$\kappa_{3p1\pi}N_p/\kappa_{4p}N_\pi$	-	-	-1	1	-	-	-
	$\kappa_{3p}N_p^{3/2}/\kappa_{2p}^{9/4}N_\pi^{1/4}$	-	-	-3/2	-	1	-	-
	$\kappa_{2p}\kappa_{4p}/\kappa_{3p}^2$	-	-	-	-	-2	1	-
٢	$\kappa_{3p}\kappa_{2\pi}^{3/2}/\kappa_{3\pi}\kappa_{2p}^{3/2}$	-	-	-	-	-	-	-
	$\kappa_{4p}\kappa_{2\pi}^2/\kappa_{4\pi}\kappa_{2p}^2$	-	-	-	-	-	-	-
	$\kappa_{2p2\pi}^2/\kappa_{4\pi}\kappa_{4p}$	-	-	-	-	-	-	-
L	$\kappa_{2p1\pi}/\kappa_{3\pi}^{2/3}\kappa_{3\pi}^{1/3}$	-	-	-	-	-	-	-

No parameter dependence

Ratios taken after subtracting Poisson and defined $\, {\tilde \lambda}_4' \equiv 2 { ilde \lambda}_3^2 - { ilde \lambda}_4 \,$

Massachusetts Institute of Technology r = i + j

• Parameter and energy independent ratios:

$$r_{1} = \frac{\text{skewness}_{p}}{\text{skewness}_{\pi}}, \quad r_{2} = \frac{\text{kurtosis}_{p}}{\text{kurtosis}_{\pi}}, \quad r_{3} = \frac{\kappa_{2p1\pi}}{\kappa_{3\pi}^{2/3}\kappa_{3\pi}^{1/3}}, \quad r_{4} = \frac{\kappa_{2p2\pi}}{\kappa_{4\pi}\kappa_{4p}}$$

where skewness = $\frac{\kappa_{3}}{\kappa_{2}^{3/2}}, \quad \text{kurtosis} = \frac{\kappa_{4}}{\kappa_{2}^{2}}$

• Parameter and energy independent ratios:

 $r_{1} = \frac{\text{skewness}_{p}}{\text{skewness}_{\pi}}, \quad r_{2} = \frac{\text{kurtosis}_{p}}{\text{kurtosis}_{\pi}}, \quad r_{3} = \frac{\kappa_{2p1\pi}}{\kappa_{3\pi}^{2/3}\kappa_{3\pi}^{1/3}}, \quad r_{4} = \frac{\kappa_{2p2\pi}}{\kappa_{4\pi}\kappa_{4p}}$ where skewness = $\frac{\kappa_{3}}{\kappa_{2}^{3/2}}, \quad \text{kurtosis} = \frac{\kappa_{4}}{\kappa_{2}^{2}}$

• All equal to 1 if CP contribution dominates

• Parameter and energy independent ratios:

 $r_{1} = \frac{\text{skewness}_{p}}{\text{skewness}_{\pi}}, \quad r_{2} = \frac{\text{kurtosis}_{p}}{\text{kurtosis}_{\pi}}, \quad r_{3} = \frac{\kappa_{2p1\pi}}{\kappa_{3\pi}^{2/3}\kappa_{3\pi}^{1/3}}, \quad r_{4} = \frac{\kappa_{2p2\pi}}{\kappa_{4\pi}\kappa_{4p}}$ where skewness = $\frac{\kappa_{3}}{\kappa_{2}^{3/2}}, \quad \text{kurtosis} = \frac{\kappa_{4}}{\kappa_{2}^{2}}$

- All equal to 1 if CP contribution dominates
- Poisson contribution: $r_1 = (N_{\pi}/N_p)^{1/2}$, $r_2 = N_{\pi}/N_p$, $r_3 = r_4 = 0$

• Parameter and energy independent ratios:

 $r_{1} = \frac{\text{skewness}_{p}}{\text{skewness}_{\pi}}, \quad r_{2} = \frac{\text{kurtosis}_{p}}{\text{kurtosis}_{\pi}}, \quad r_{3} = \frac{\kappa_{2p1\pi}}{\kappa_{3\pi}^{2/3}\kappa_{3\pi}^{1/3}}, \quad r_{4} = \frac{\kappa_{2p2\pi}}{\kappa_{4\pi}\kappa_{4p}}$ where skewness = $\frac{\kappa_{3}}{\kappa_{2}^{3/2}}, \quad \text{kurtosis} = \frac{\kappa_{4}}{\kappa_{2}^{2}}$

- All equal to 1 if CP contribution dominates
- Poisson contribution: $r_1 = (N_{\pi}/N_p)^{1/2}, r_2 = N_{\pi}/N_p, r_3 = r_4 = 0$
- How to use these ratios:
 - If one sees peaks in the measured cumulants at some μ_B
 - Calculate these ratios around the peak
 - If equal to 1 ➡ Parameter independent way of verifying that the fluctuations you see are due to the CP

Constraining parameters

• If CP found, can constrain parameters by measuring cumulant ratios near the CP

Constraining parameters

- If CP found, can constrain parameters by measuring cumulant ratios near the CP

Constraining parameters

- If CP found, can constrain parameters by measuring cumulant ratios near the CP
- For example, some choices are:

1.
$$G \xi$$
 using $\kappa_{2p2\pi} N_{\pi} / \kappa_{4\pi} \kappa_{2p}$ or $\kappa_{4p} N_{\pi}^2 / \kappa_{4\pi} \kappa_{2p}^2$,
2. G/g using $\kappa_{2p2\pi} N_p^2 / \kappa_{4p} N_{\pi}^2$ or $\kappa_{3p1\pi} N_p / \kappa_{4p} N_{\pi}$,
3. $\tilde{\lambda}'_4 / \tilde{\lambda}^2_3$ using $\kappa_{2p} \kappa_{4p} / \kappa_{3p}^2$,
4. $\tilde{\lambda}^2_3 / g^3$ using $\kappa_{3p} N_p^{3/2} / \kappa_{2p}^{9/4} N_{\pi}^{1/4}$.

Outline

- Introduction
- Critical Contribution to Particle Multiplicity Fluctuations
- Ratios of Fluctuation Observables
- Summary

Summary

- We used particle multiplicity fluctuations as a probe to the location of the CP
- Higher cumulants of event-by-event distributions are more sensitive to critical fluctuations
- CP signature: Non-monotonic behavior, as a function of collision energy, of multiplicity cumulants
- Constructed cumulant ratios to identify the CP location with reduced parameter uncertainties
- If CP is found, showed how to use cumulant ratios to constraint the values of the non-universal parameters

Thank you!

